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A new safe optimal consensus procedure is presented to guarantee the 

asymptotic and string stability as well as crash avoidance of large-scale 

non-identical traffic flow. Since time delay is an inherent characteristic of 

physical actuators and sensors, measurement delay and lags are involved 

in the upper-level control structure. A third-order linear model is 

employed to define the 1-D motion of each automated vehicle (AV) and 

the constant time headway plan is employed to regulate the inter-AV 

distance. It is assumed that the network structure is decentralized look 

ahead (DLA) and each AV has access to relative position and velocity 

regarding with the front AV. A linear control law is introduced for each 

AV and by performing the stability analysis in frequency domain, the 

necessary conditions guaranteeing string stability and crash avoidance for 

large-scale traffic flow are derived. Afterwards, to calculate the optimal 

control parameters guaranteeing the best performance, an objective 

function combining all mentioned conditions as well as maximum 

overshoot, settling time and stability margin is introduced. The genetic 

algorithm (GA) technique is employed to optimize the presented objective 

function and obtain the optimal control parameters. Various numerical 

results are proposed to demonstrate the efficiency of this method. 
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1.  Introduction 

From the past few years, the traffic jam has been 

recognized as a crucial environmental, social and 

economic problem by many governments. The traffic 

jam has numerous undesirable occurrences such as 

increasing air pollution, traveling time, fuel 

consumption and decreasing safety, highway 

capacity, etc. [1, 2]. The intelligent transportation 

systems (ITS) are useful and applicable solutions for 

the problems arisen by traffic jam [3-5]. The idea of 

multiple connected automated vehicles (MCAV) is a 

useful tool to achieve the idea of ITS [6-8]. The main 

purpose of connecting the automated vehicles (AVs) 

is organizing motion of the traffic flow with an 

identical velocity and as small as possible inter-AV 

distances [9-11]. 

In general, three plans are used to regulate the inter-

AV distance in convoys of AVs. 1) Constant distance 

plan (CDP): the inter-AV distance is controlled to be 

always constant [6, 10, 12]. 2) Constant time 

headway plan (CTHP): the inter-AV distance is a 

function of leader AV velocity [3, 13] and 3) mixed 

distance plan (MDP): which is a combination of CDP 

and CTHP [14, 15]. The network structure of MCAV 

can be centralized [16] or decentralized [17]. If the 

leader AV be in communication with all following 
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distance plan (CDP): the inter-AV distance is 

controlled to be always constant [6, 10, 12]. 2) 

Constant time headway plan (CTHP): the inter-AV 

distance is a function of leader AV velocity [3, 13] 

and 3) mixed distance plan (MDP): which is a 

combination of CDP and CTHP [14, 15]. The 

network structure of MCAV can be centralized [16] 

or decentralized [17]. If the leader AV be in 

communication with all following AVs, network is 

centralized and otherwise is decentralized [18]. 

Two major stability analyses are investigated in 

MCAV. A convoy of AVs is asymptotic stable if the 

distance error between consequent AVs tends to zero 

asymptotically [19, 20]. Moreover, a convoy of AVs 

is string stable if the amplitude of distance error will 

not increase along the convoy by applying an 

external disturbance on leader AV [21, 22]. The 

assurance of string stability completely depends on 

network communication structure. Decentralized 

look ahead (DLA) networks with CDP cannot 

achieve the string stability [20]. 
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    The huge amount of relevant literature on 

MCAV can be classified to different categories. 1) 

Communication structure: Decentralized look ahead 

[23], centralized look ahead [10], decentralized bi-

directional [24], centralized bi-directional [25], 

decentralized multi ahead AVs following [18], 

centralized multi ahead AVs following [26] and 

non-uniform structure [12, 27]. 2) Linear control 

scheme including: scalability [19], crash avoidance 

[28], time delay [12, 29], model predictive control 

[23], partial differential equation approximation 

[30]. 3) Nonlinear control: adaptive [3] and robust 

[31] control. 4) Identical [32] and non-identical [13] 

MCAV. 5) String stability analysis [33, 34] and 6) 

optimal performance [35]. 

    Beside the previous works on MCAV, a 

comprehensive method guaranteeing four purposes 

asymptotic stability, string stability, crash avoidance 

and optimal control parameter scheduling has not 

been offered. In these works, at most two purposes 

are satisfied simultaneously for example asymptotic 

and string stability [7, 10], asymptotic stability and 

crash avoidance [36] and asymptotic stability and 

optimal control [37]. Motivated by previous 

researches, in this paper a comprehensive optimal 

consensus procedure is presented to satisfy 

asymptotic stability, string stability and crash 

avoidance and optimizing the control parameters of 

large-scale non-identical traffic flows. Since time 

delay is an intrinsic feature of physical actuators and 

sensors, measurement delay and lags are considered 

in consensus procedure and analyzing the stability. 

A linear control procedure employing relative 

position and velocity regarding with the front AV is 

introduced for each following AV. The necessary 

constrains on control parameters guaranteeing 

asymptotic stability, string stability and crash 

avoidance are obtained by deriving the closed-loop 

dynamics of each following AV. To calculate the 

optimal values of control parameters, a new 

objective function including important features 

stability index, maximum overshoot, string stability, 

crash avoidance conditions and settling time is 

introduced. Afterwards, the genetic algorithm (GA) 

technique is employed to optimize the presented 

objective function. It will be shown that under this 

optimal control law, the asymptotic stability, string 

stability and crash avoidance of large-scale non-

identical traffic flow under the measurement delay 

and lags are guaranteed. In summary, the most 

important novelties of the current study are 

enumerated as follows. 1) Presenting a 

comprehensive consensus procedure assuring 

simultaneously the crash avoidance, asymptotic 

stability and string stability of large-scale non-

identical traffic flow in presence of measurement 

delay and actuator lag and 2) presenting an optimal 

consensus procedure to optimize the control 

parameters and consequently, the control effort. 

The remain of the current study is structured as 

follows. In part 2, the upper-level dynamics of AVs 

is introduced. In part 3, the asymptotic and string 

stability are discussed. In part 4, crash avoidance 

analysis is performed. In part 5, the optimal control 

parameters assuring asymptotic and string stability 

and crash avoidance are calculated by using genetic 

algorithm. In part 6, numerical results are presented 

to illustrate the efficiency of the presented 

algorithm. Lastly, this study is concluded in part 7. 

 

2.  Upper-level dynamics of AVs 

A non-identical traffic flow can be modeled as 

cooperative non-identical convoys according to Fig. 

1. Each convoy consists of a leader AV and some 

following AVs. In a convoy of AVs, ,i ix v and 
ia  are 

position, velocity and acceleration of i-th AV, 

respectively. Moreover, 
0 0,x v and 

0a  denote the 

position, velocity and acceleration of leader AV, 

respectively. 

The upper-level dynamics of the i-th AV is 

presented as follows [6, 7, 12, 20]: 

i i i ia a u + =  (1) 

where 
iu  and 

i  are the upper-level controller and 

engine time constant of the i-th AV, respectively. 

The control architecture of an AV consists of two 

levels [20]. 

 

 

Figure 1: Large-scale non-identical traffic flow. 
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A lower-level controller compensates the 

nonlinear 1-D dynamics and an upper-level 

controller determines the desired acceleration of 

AV. In this paper, only the upper-level control is 

designed and we assume that the lower-level control 

has been already designed. 

 

3.Analyzing of asymptotic and string 

stability 

3.1. Analyzing of asymptotic stability 

The desired distance between two consecutive AVs 

is considered as 
1, min 1i i i i iS h v S l− −= + +  where

min,ih S  and 
1il −
 are constant time headway of the i-

th AV, minimum safe distance and length of the 

front AV. The distance error between consecutive 

AVs is defined as: 

1 1 mini i i i i ix x l h v S − −= − − − −  (2) 

According to DLA network structure, the following 

control law is defined for the i-th AV 

( ) ( )

( ) ( )

1 1 1 min

2 1

( )i

i i i i i

i i i i

u t

k x t d x t d l h v S

k v t d v t d h a

− −

−

=

− − − − − −  

+ − − − −  

 (3) 

where 
1k  and 

2k  are control parameters and d is the 

communication time delay. Lag is an inherent 

feature of mechanical actuators. By considering the 

engine’s lag ( )i , the control law (3) will be in the 

following form: 

( )

( ) ( )

( )  ( )

( ) ( ) 

11 1

min 2 1

i i

iiiii

i i i i i

i i i i i

u t

t x t lk x

h v t S k v t

v t h a t

−−

−

− =

 − − − −

− − − + −

− − − −

  (4) 

where
i i d = + . By defining the desired position 

of the i-th AV as ( )0 1, 11
,

id

i j j jj
x x S l− −=

= − +  the 

distance error of the i-th AV will be as follows: 

dd

i i i i i i i ie x x e x x e x= −  = −  =  (5) 

By employing (1), (4) and (5) and using 

1 0 1

d d

i i ix x hv l− −− = − , the closed-loop dynamics of 

the i-th AV is derived as (6). 

 

( ) ( ) ( )

( ) ( ) ( )

1 1

2 1

i i i

i i i i i i i

i i i i i i i

e e

k e t e t h e t

k e t e t h e t



−

−

+ =

 − − − − − 

 + − − − − − 

 (6) 

Taking the Laplace transform of (6) with zero initial 

conditions yields 

( )

( )  ( )

3 2

1 2

1 2 1 2 1

i

i i

s

i

s s

i i i

s s k k s e

k k s h se E k k s e E

 −

− −

−

 + + + +

+ = +
 (7) 

Therefore, we will have 

( )

( ) ( )

1

1 2

23

2 1 21

( )
( )

( )

i

i i

i

i

s

ss

ii

i

i

i

E

E

k k s e

s s k s e k k s h sek

P s
Q s

R s



−

−

− −

=

+

++++ +

= =

 (8) 

We can conclude that a large-scale traffic flow with 

DLA communication structure is asymptotic stable 

if and only if the transfer function ( )iQ s be 

asymptotically stable or ( )iR s be Hurwitz. 

3.2. Analyzing of string stability 

The transfer function ( )iQ s  refers to the distance 

error propagation of two subsequent AVs i-1 and i. 

It can be proved that under the subsequent condition, 

the string stability of a traffic flow is guaranteed [3, 

4, 6, 12, 20]. 

1

( )
( ) 1, 0

( )

i

i

i

E j
Q j

E j


 

−

=     (9) 

Theorem 1. A large-scale non-identical traffic flow 

with control law (3) is string stable under the 

following condition. 

1 2

2

i

k
h

  (10) 

Proof. According to (9), if 
22

0,( )( ) ii P jR j  −  

the string stability is guaranteed. We can write 
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(

)

2 2 2 2

1 2

2

1 2

2

1 2

3

1 2

2

1 2

( )

( ) cos sin

sin cos

( sin cos

cos sin )

i

i ii

i i i i

i i i

i i i i

P j k k

R j k k

h k h k

j k k

k h h k

 

    

   

    

   

= +

= − +  + 

+  −  +

− −  + 

+  + 

       
  

(11) 

By doing some algebraic calculations, we will have 

( )

( ) ( )

( ) ( )

2 2 2

2 2 2 2

1 2

222224226

2122

3 4

1 2

4 5

1 2

2 3

1 2

3 4

1 2

( ) ( ) [Im ( )

Re ( ) ]

1

2 sin 2 cos

2 cos 2 sin

2 cos 2 sin

2 sin 2 cos

i i i

i

iii

i i i i

i i i i i i

i i

i i i i

R j P j R j

R j k k

h k k h k k

k k

k h k h

k k

k h k h

  

 

   

     

     

   

   

− = +

− + =

+ + + + −

+  −  −

 −− 

−  −  −

 + 

 (12) 

By employing the subsequent math expressions 

0 : sin sin ;

cos 1 cos 1

    

 

    −  −

  −  −
 (13) 

Eq. (12) is shortened as (14): 

( )

( )

2 2

2262

222

1 2 2 1

4 2 2

1 1 1

( ) ( )

2 (1 2

2 2 2 2

2 ) 2 0

i i

iiiiii

i i i i i i

i i

R j P j

h k h k h k

k h k k k

k h k k h

 

  

 

  

− =

−  + + − −

 −  − −  −

+ − 

 
(14) 

In [38], it is proved that the most energy of distance 

errors is in the low frequency area. Therefore, this 

area is very prominent for string stability. 

Accordingly, if the coefficient of 
2  be positive or 

equivalently (10) holds, we conclude that the string 

stability is guaranteed and the proof is complete. 

 

4. Crash avoidance analysis 

The asymptotic and the string stability 

conditions could not guarantee the crash 

avoidance of a MCAV during 

accelerating/decelerating motions of leader 

AV. The following theorem introduces the 

sufficient conditions guaranteeing crash 

avoidance. 

Theorem 2. Consider the polynomial
1

01 2,( ) nn

nnn nbb xb xA x −

− += ++  with 

positive coefficients 1 0, , , .n nb b b−  Under the 

following condition, nA  has only distinct real roots 

[39]. 

 
2

1 1 , 11,2,4 0 ;i i i nib b b− + −=−   (15) 

Consider the following transfer function between 

the separation distance with the front AV and the 

velocity of subsequent vehicle AV. 

1

( )
( )

( )

i

i

i

s
s

v s



−

 =  (16) 

where ( )i s  is the Laplace transform of 

1 1 min( )i i i it x x l S − −= − − − . If the impulse response 

of ( )i s  preserves its sign, the crash between 

consecutive AVs is avoided. The following theorem 

deals with the sufficient conditions guaranteeing 

crash avoidance of large-scale non-identical traffic 

flow. 

 
Theorem 3. Under the following conditions, the 

crash avoidance of large-scale non-identical traffic 

flow is guaranteed. 

 
2

2 2 1

2

2 1 1 2

(1 ) 4 ( ) 0

( ) 4 (1 ) 0

i i i

i i

k h k k h

k k h k k h

+ − + 

+ − + 
 (17) 

Proof. By employing (1) and (3), the closed-loop 

dynamics of i-th AV without delay will be as (18): 

 

( ) ( )1 2( ) ( )i i i i i i i i ia a k t h v k t h a  + = − + −  (18) 

By taking Laplace transform from (18), we will have 

 

1 2

1 2

1 2

1 2

(1 ) ( )
( ) ( )

( ) (1 ) ( )

( )

i i

i i

i i i

i

s h k k s
s v s

k k s

s s h k k s

k k sv s




 

+ + +
=

+

+ + +
 =

+

 (19) 

Eq. (18) can be revised as (20): 

1122

11 1 2

(1 ) ( )i i i i i i i

i i

v k h v k k h v k v

k v k v



− −

+ + + + +

= +
 (20) 

Taking Laplace transform of (20) yields 

      

( ) ( )
1 2

3 2

1 2 2 1 1

( )

( ) 1

i

i i i i

v s k k s

v s s k h s k k h s k−

+
=

+ + + + +
 (21) 

By employing (19) and (21), we obtain that 
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1 1

1 2

2

1 2

( ) ( ) ( )
( )

( ) ( ) ( )

(1 ) ( )

(1 ) (1 ) ( )

i i i

i

i i i

i i

i i

s s v s
s

sv s vsv

k sh kss

s s h s k k s

 





− −

 = =

+ + +
=

+ + + +

 (22) 

Since all poles of ( )i s are real, we can write 

31 2

321

( )i

nn n
s

s qs qs q
 = + +

+++
 (23) 

where 1 1 2

1

1 2 1 3 1

,
( ) ( )i

k q k
n

qqqq q

−
=

− −

1 2 2

2

2 1 2 3 2

,
( ) ( )i

k q k
n

q q q q q

−
=

− −
 and 

1 3 2

3

3 1 3 2 3

.
( ) ( )i

k q k
n

q q q q q

−
=

− −
 

We assume that 1 2 3q q q  . Moreover, the 

impulse response of ( )i s  is assumed in the 

following form 

 
31 2

1 2 3( )
q tq t q tt n e n e n e −− −= + +  (24) 

Since 
3q  is the minimum pole of the ( )i s , 

3n  has 

the main weight in ( ).t  By doing some 

mathematical manipulations, it is concluded that 

1 2 3 0n n n+ +   and 
1 2 3 0n n n  . Since 

1 2 3 0n n n  , 

two possibilities can be considered for coefficients

.in  1) All 
1 2,n n  and 

3n  have negative sign which is 

in conflict with 
1 2 3 0.n n n+ +  2) Two of 

1 2,n n and

3n have positive signs. Based on the assumption 

1 2 3q q q  , we will have
1 3 2k q k− 

1 2 2 1 2 2k q k k q k−  −  and the coefficients
1 2 3, ,n n n

have positive, negative and positive signs, 

respectively. So that, 
1 3 2k q k−  must be positive else, 

two of coefficients
in are negative that is in conflict 

with 
1 2 3 0n n n  . Hence, 

3n is always positive. In 

other words, if the control parameters are selected so 

as to conditions (17) are satisfied, the crash 

avoidance will be guaranteed. 

 

 

5.  Optimal control parameter  scheduling 

using genetic algorithm technique 
 

The control parameters 
1k  and 

2k  should satisfy 

the asymptotic stability, string stability and crash 

avoidance simultaneously. But if we can find 

optimal values for these parameters, the control 

effort will be optimized. To this aim, the genetic 

algorithm (GA) is employed to calculate optimal 

values for 
1k  and 

2k . The objective function is 

defined as a linear function of important features: 

stability index of the ( )iQ s , ( )iQ s , conditions of 

string stability (10), conditions of crash avoidance 

(17), settling time and maximum overshoot of step 

response of ( )iQ s . Therefore, we define the 

following objective function 

      

21321 654

OF

w gw gfww Siw Stw Mp

=

+++++
 

(25) 

where Mp is the maximum overshoot, St is the 

settling time, Si is the stability index defined as 

( )

1

( )
Si

Mrp Q s
=  where ( )( )Mrp Q s  is the 

ofpolesofpartmaximum real ( )Q s , 

2

1 2i ff k h = − − ,  
2

1 2(1 )ig k h= + −

12 14 ( )i i gk k h + − and 
2

2 2 1( )ig k k h= +

21 24 (1 )i gk k h − + − where 
1

,f g  and 
2g are 

positive values should be designed. Also, 

, 1,2,...,6iw i = are the positive real weights. 

      In order to minimize the objective function (25), 

the GA is employed with the following 

characteristics. Variables should be optimized are 
1k

and 
2k , the maximum iteration to reach the optimal 

solution is 100 iterations, number of initial 

populations is considered as 50, the crossover 

percentage is 0.7 and the percentage of mutation is 

considered as 0.2.  

 

 6. Numerical studies 

In this part, a traffic flow consisting of identical and 

non- Theconsidered.isconvoysidentical

measurement delay, minimum distance and constant 

asconsideredareheadwaytime

min0.01 , 5d s S m= = , and 2h s= , respectively. For 

the identical convoy, the following values are 

considered: 0.13 ,  0.1s s = =  and 4 .l m=  

Moreover, the constant weights , 1,2,...,6iw i =  are 

aschosen
1 2 3 4=1.2, =7.4, =1.1, =0.2,w w w w

5 6=0.5, =0.5w w  in both identical and non-identical 

convoys. Since settling time and maximum 

overshoot are more important than other features, 

their coefficients are selected greater than other 

coefficients. To study the performance of 

asymptotic and string stability in presence of 

external disturbance, we assume that the leader AV 

motion is according to acceleration profile  
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0

40 502,

( ) 120 1301,

0,

t

a t t

otherwise

 −


=  



 

with initial steady velocity 40 / .m s  

 

6.1. Convoy of identical AVs 

By using the GA technique, the optimal control 

parameters which minimize the objective function 

(25) are derived as 
1 1.42k =  and 

2 0.43.k =  Fig. 2 

displays the behavior of objective function. 

According to this figure, the optimal value of 

objective function by passing 100 repetitions is 

12.18. Moreover, the optimal values of maximum 

overshoot, settling time and stability margin are 

calculated as 0, 1.302Mp Ts s= = and

( )( ) 1.745Mrp Q s = , respectively. 

Fig. 3 shows the distance error between neighbor 

vehicles of convoy. According to this figure, since 

the distance error vanishes asymptotically, the 

convoy is internal (asymptotic) stable. On the other 

hand, the maximum of distance errors of following 

AVs decreases along the convoy during accelerating 

and decelerating motions. So that, the convoy of 

identical AVs is string stable. The velocity of AVs 

are illustrated in Fig. 4. According to this figure, 

since the convoy is internal stable, all AVs track the 

leader AV velocity. To study the crash avoidance 

performance of identical convoy, a hard and sudden 

braking maneuver is assumed for the leader AV. Fig. 

5 depicts the velocity of convoy during a drastic 

braking. As this figure indicates, AV’s velocities 

behave monotonically during braking maneuver. 

Fig. 6 shows the inter-AV distance of identical 

convoy during a drastic braking. According to this 

figure, the inter-AV distance after emergency stop is 

always positive therefore, the safety is assured and 

crash avoidance is achieved. 

 

Figure 2: Variation of objective function. 

 

 

Figure 3: Distance error of identical convoy. 

 

Figure 4: Velocity of identical convoy. 

 

 

Figure 5: Velocity of identical convoy during 

emergency braking. 
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Figure 6: Inter-AV distance of identical convoy during a 

drastic braking. 

Table 1 shows a comparison of important features 

for optimal (case 1) and non-optimal (case 2) control 

parameters. According to these results, the case 2 

presents a weak performance. The maximum of 

overshoot in case 1 is zero, while in case 2 is %46.2  

which dramatically introduces an undesirable 

response. The settling time of case 1 is smaller than 

case 2. Since the stability index of case 1 is larger 

than case 2, it shows a better time response. Finally, 

the maximum value of spacing error in case 1 is 

larger than case 2. Therefore, the length of platoon 

in case 2 is larger than case 1 which means that the 

traffic capacity is smaller in case 2. 

 

6.2. Non-identical convoy of AVs 

 The system parameters and optimal control 

parameters calculated by genetic algorithm are 

presented in Table 2. These values are 

employed in simulation results. 

The distance error and convoy velocity are 

depicted in Figs. 7 and 8, respectively. 

According to these figures, since the distance 

error vanishes asymptotically, the vehicle 

convoy is internal stable. Moreover, the 

amplitude of distance error has a decrement 

trend implying that the convoy is string stable. 

Figs. 9 and 10 depict the behavior of non-

identical convoy during emergency braking. As 

these figures show, the distance error is always 

positive and consequently, the non-identical 

convoy is safe and crash avoidance is assured.

 
Table 1: Performance of close-loop dynamics with optimal and non-optimal control parameters 

Important features 
1k  

2k  Mp  ( )St s  Si  
1 , ( )( )max mt  

Optimal control parameters 1.42 0.43 0 2.62 0.66 1.38 

Non-optimal control 

parameters 

2.18 1.17 46.2 3.64 0.95 2.21 

 
Table 2: Parameters of non-identical AV convoy 

AV number ( )i s  ( )i s  ( )l m  
1k  

2k  

1 0.1 0.1 4 1.45 0.47 

2 0.12 0.08 4.1 1.48 0.39 

3 0.15 0.13 3.9 1.4 0.43 

4 0.08 0.15 4.2 1.38 0.4 

5 0.1 0.18 4 1.37 0.39 

6 0.05 0.07 3.7 1.33 0.35 

7 0.12 0.2 4.1 1.38 0.39 

8 0.13 0.1 3.5 1.42 0.43 

9 0.09 0.14 4.4 1.44 0.41 

10 0.14 0.18 4.3 1.36 0.35 
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Figure 7: Distance error of non-identical convoy. 

 

Figure 8: Velocity of non-identical convoy. 

 

Figure 9: Velocity of non-identical convoy during emergency braking. 
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Figure 10: Inter-AV distance of non-identical convoy in emergency braking. 

 

7. Conclusion 

In this paper, a decentralized safe optimal 

consensus procedure was presented to achieve 

an optimal performance of large-scale non-

identical traffic flow. Measurement delay and 

lag were investigated in control structure and 

stability analysis. Constant time headway plan 

was used to regulate the inter-AV distance and 

a linear consensus procedure by using the 

relative position and velocity regarding with the 

front AV was presented for each following AV. 

Necessary conditions on control parameters 

assuring asymptotic stability, string stability 

and crash avoidance were derived. To achieve 

an optimal control performance, the genetic 

algorithm technique was used to calculate the 

optimal values of control gains. We proved that 

the proposed method is a comprehensive 

method guaranteeing asymptotic stability, 

crash avoidance, string stability and optimal 

traffic flow behavior, simultaneously. Various 

numerical studies were presented to 

demonstrate the efficiency of the offered 

method. 
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